Numerical and simulation methods for aerodynamics  

Unit Information This unit is an introduction to the fundamental mathematical and physical principles involved in the development and application of modern methods in numerical and simulation methods for aerodynamics. Forms of the governing flow equations are first discussed and these are then reduced to a simple model equation, which is used for the development and testing of fundamental numerical methods. Accuracy, stability and convergence of these schemes are investigated mathematically. Issues involves in applying these methods to real aerodynamic flows are the discussed, i.e. methods required to produce simulation methods, including mesh generation aspects, finite-volume methods, data storage and memory implications, and the impact of continuing developments in computer architecture. Aims: The aim of this unit is to equip the student with: Knowledge and understanding of the fundamental mathematical and physical principles involved in the development of numerical methods; Knowledge and understanding of the issues involved in applying modern numerical methods in computational aerodynamics; Knowledge and understanding of methods of mesh generation and links with numerical code development; Knowledge and understanding of the impact of developments in computer hardware and software on application of computational methods; Skills necessary to develop numerical simulation codes.
Presential
English
Numerical and simulation methods for aerodynamics
English

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or HaDEA. Neither the European Union nor the granting authority can be held responsible for them. The statements made herein do not necessarily have the consent or agreement of the ASTRAIOS Consortium. These represent the opinion and findings of the author(s).